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Types of outliers in linear
regression



Types of outliers

How do outliers influence the least
squares line in this plot?

To answer this question think of
where the regression line would be
with and without the outlier(s).
Without the outliers the regression
line would be steeper, and lie closer
to the larger group of observations.
With the outliers the line is pulled up
and away from some of the
observations in the larger group.
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Types of outliers

How do outliers influence the
least squares line in this plot?

Without the outlier there is
no evident relationship
between x and y.
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Some terminology

• Outliers are points that lie away from the cloud of points.

• Outliers that lie horizontally away from the center of the cloud are
called high leverage points.

• High leverage points that actually influence the slope of the
regression line are called influential points.

• In order to determine if a point is influential, visualize the regression
line with and without the point. Does the slope of the line change
considerably? If so, then the point is influential. If not, then itÕs not
an influential point.
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Influential points

Data are available on the log of the surface temperature and the log of
the light intensity of 47 stars in the star cluster CYG OB1.
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Types of outliers

Which of the below best de-
scribes the outlier?

(a) influential

(b) high leverage

(c) none of the above

(d) there are no outliers
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Types of outliers

Does this outlier influence the
slope of the regression line?

−5

0

5

10

15

−5

0

5

6



Types of outliers

Does this outlier influence the
slope of the regression line?

Not much...
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Recap

Which of following is true?

(a) Influential points always change the intercept of the regression line.

(b) Influential points always reduce R2.

(c) It is much more likely for a low leverage point to be influential, than a
high leverage point.

(d) When the data set includes an influential point, the relationship
between the explanatory variable and the response variable is always
nonlinear.

(e) None of the above.
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Recap (cont.)

R = 0.08,R2 = 0.0064
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Inference for linear regression



Nature or nurture?

In 1966 Cyril Burt published a paper called “The genetic determination of

differences in intelligence: A study of monozygotic twins reared apart?” The data

consist of IQ scores for [an assumed random sample of] 27 identical twins, one

raised by foster parents, the other by the biological parents.
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Which of the following is false?

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.20760 9.29990 0.990 0.332

bioIQ 0.90144 0.09633 9.358 1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom

Multiple R-squared: 0.7779,Adjusted R-squared: 0.769

F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

(a) Additional 10 points in the biological twin’s IQ is associated with
additional 9 points in the foster twin’s IQ, on average.

(b) Roughly 78% of the foster twins’ IQs can be accurately predicted by
the model.

(c) The linear model is ̂fosterIQ = 9.2 + 0.9 × bioIQ.

(d) Foster twins with IQs higher than average IQs tend to have biological
twins with higher than average IQs as well.
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Testing for the slope

Assuming that these 27 twins comprise a representative sample of all
twins separated at birth, we would like to test if these data provide con-
vincing evidence that the IQ of the biological twin is a significant predictor
of IQ of the foster twin. What are the appropriate hypotheses?

(a) H0 : b0 = 0; HA : b0 , 0

(b) H0 : β0 = 0; HA : β0 , 0

(c) H0 : b1 = 0; HA : b1 , 0

(d) H0 : β1 = 0; HA : β1 , 0
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Testing for the slope (cont.)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

• We always use a t-test in inference for regression.
Remember: Test statistic, T = point estimate−null value

SE

• Point estimate = b1 is the observed slope.

• SEb1 is the standard error associated with the slope.

• Degrees of freedom associated with the slope is df = n − 2, where n
is the sample size.
Remember: We lose 1 degree of freedom for each parameter we estimate, and in simple linear

regression we estimate 2 parameters, β0 and β1.
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Testing for the slope (cont.)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

T =
0.9014 − 0

0.0963
= 9.36

df = 27 − 2 = 25

p − value = P(|T | > 9.36) < 0.01
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% College graduate vs. % Hispanic in LA

What can you say about the relationship between % college graduate and
% Hispanic in a sample of 100 zip code areas in LA?
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% College educated vs. % Hispanic in LA - another look

What can you say about the relationship between of % college graduate
and % Hispanic in a sample of 100 zip code areas in LA?
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% College educated vs. % Hispanic in LA - linear model

Which of the below is the best interpretation of the slope?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7290 0.0308 23.68 0.0000
%Hispanic -0.7527 0.0501 -15.01 0.0000

(a) A 1% increase in Hispanic residents in a zip code area in LA is
associated with a 75% decrease in % of college grads.

(b) A 1% increase in Hispanic residents in a zip code area in LA is
associated with a 0.75% decrease in % of college grads.

(c) An additional 1% of Hispanic residents decreases the % of college
graduates in a zip code area in LA by 0.75%.

(d) In zip code areas with no Hispanic residents, % of college graduates
is expected to be 75%.

16



% College educated vs. % Hispanic in LA - linear model

Which of the below is the best interpretation of the slope?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7290 0.0308 23.68 0.0000
%Hispanic -0.7527 0.0501 -15.01 0.0000

(a) A 1% increase in Hispanic residents in a zip code area in LA is
associated with a 75% decrease in % of college grads.

(b) A 1% increase in Hispanic residents in a zip code area in LA is
associated with a 0.75% decrease in % of college grads.

(c) An additional 1% of Hispanic residents decreases the % of college
graduates in a zip code area in LA by 0.75%.

(d) In zip code areas with no Hispanic residents, % of college graduates
is expected to be 75%.

16



% College educated vs. % Hispanic in LA - linear model

Do these data provide convincing evidence that there is a statistically sig-
nificant relationship between % Hispanic and % college graduates in zip
code areas in LA?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7290 0.0308 23.68 0.0000

hispanic -0.7527 0.0501 -15.01 0.0000

How reliable is this p-value if these zip code areas are not randomly se-
lected?
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Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate ±ME and the

degrees of freedom associated with the slope in a simple linear regression is n−2.

Which of the below is the correct 95% confidence interval for the slope parameter?

Note that the model is based on observations from 27 twins.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

(a) 9.2076 ± 1.65 × 9.2999

(b) 0.9014 ± 2.06 × 0.0963

(c) 0.9014 ± 1.96 × 0.0963

(d) 9.2076 ± 1.96 × 0.0963

n = 27 df = 27 − 2 = 25

95% : t?25 = 2.06

0.9014 ± 2.06 × 0.0963

(0.7 , 1.1)
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Recap

• Inference for the slope for a single-predictor linear regression model:

• Hypothesis test:

T =
b1 − null value

SEb1

df = n − 2

• Confidence interval:
b1 ± t?df=n−2SEb1

• The null value is often 0 since we are usually checking for any
relationship between the explanatory and the response variable.

• The regression output gives b1, SEb1 , and two-tailed p-value for the
t-test for the slope where the null value is 0.

• We rarely do inference on the intercept, so we’ll be focusing on the
estimates and inference for the slope.
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Caution

• Always be aware of the type of data you’re working with: random
sample, non-random sample, or population.

• Statistical inference, and the resulting p-values, are meaningless
when you already have population data.

• If you have a sample that is non-random (biased), inference on the
results will be unreliable.

• The ultimate goal is to have independent observations.
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