Class 27: Linear Modeling III

Dr. Glasbrenner

December 4, 2017

Setup

# Configure settings for compiling to HIML and PDF
knitr: :opts_chunk$set(
echo = TRUE, eval = TRUE, fig.width = 5, fig.asp = 0.618, out.width = ”70%”,
dpi = 120, fig.align = ”“center”, cache = TRUE)
# Load required packages
suppressPackageStartupMessages (library(tidyverse))
suppressPackageStartupMessages(library(modelr))
suppressPackageStartupMessages(library(broom))
load(url(”http://falll7.cds101.com/R/mariokart_cross_validation.RData”))
# Load datasets
mariokart <- read_rds(url(”http://falll7.cds101.com/datasets/mariokart.rds”))

Get a blank working RMarkdown file:

download.file(”http://falll7.cds101.com/documents/class27.txt”,
destfile = ”class27.Rmd”)

Exploration

View the first several entries of the Mario Kart dataset:

glimpse(mariokart, width = 80)

## Observations: 143
## Variables: 12

## $ ID <dbl> 150377422259, 260483376854, 320432342985, 280405224677, ..
## $ duration <int> 3, 7, 3, 3, 1, 3, 1, 1, 3, 7, 1, 1, 1, 1, 7, 7, 3, 3, 1,...
## $ nBids <int> 20, 13, 16, 18, 20, 19, 13, 15, 29, 8, 15, 15, 13, 16, 6...
## $ cond <fctr> new, used, new, new, new, new, used, new, used, used, n...
## $ startPr <dbl> 0.99, 0.99, 0.99, 0.99, 0.01, 0.99, 0.01, 1.00, 0.99, 19...
## $ shipPr <dbl> 4.00, 3.99, 3.50, 0.00, 0.00, 4.00, 0.00, 2.99, 4.00, 4....
## $ totalPr <dbl> 51.55, 37.04, 45.50, 44.00, 71.00, 45.00, 37.02, 53.99,

## $ shipSp <fctr> standard, firstClass, firstClass, standard, media, stan...
## $ sellerRate <int> 1580, 365, 998, 7, 820, 270144, 7284, 4858, 27, 201, 485...
## $ stockPhoto <fctr> yes, yes, no, yes, yes, yes, yes, yes, yes, no, yes, ye...
## $ wheels <int> 1, 1, 1, 1, 2, 0, 0, 2, 1, 1, 2, 2, 2, 2, 1, 0, 1, 1, 2,...
## $ title <fctr> ~~ Wii MARIO KART &amp; WHEEL ~ NINTENDO Wii ~ BRAND NE...
Check for outliers:

ggplot (mariokart) +
geom_histogram(
mapping = aes(x = totalPr, fill = cond, color = cond),
position = “identity”, alpha = 0.3, binwidth = 5,
center = 0)



20-
15-
- cond
=
S 1l new
3
10- | [::]used
5 -
. il D
100 200 300
totalPr
What are these outliers?
mariokart %>%
filter(totalPr > 100) %>%
glimpse(width = 80)
## Observations: 2
## Variables: 12
## $ ID <dbl> 110439174663, 130335427560
## $ duration <int> 7, 3
## $ nBids <int> 22, 27
## $ cond <fctr> used, used
## $ startPr <dbl> 1.00, 6.95
## $ shipPr <dbl> 25.51, 4.00
## $ totalPr <dbl> 326.51, 118.50
## $ shipSp <fctr> parcel, parcel
## $ sellerRate <int> 115, 41
## $ stockPhoto <fctr> no, no
## $ wheels <int> 2, 0
## $ title <fctr> Nintedo Wii Console Bundle Guitar Hero 5 Mario Kart , 1...

Look at the titles:

mariokart %>%
filter(totalPr > 100) %>%
select(title) %>%
head ()

## # A tibble: 2 x 1

HH title
#4 <fctr>
## 1 Nintedo Wii Console Bundle Guitar Hero 5 Mario Kart

## 2 10 Nintendo Wii Games - MarioKart Wii, SpiderMan 3, etc

These are bundled items, not like the rest of the items in the dataset. Let’s remove them:

mariokart_no_outliers <- mariokart %>% filter(totalPr <= 100)

Pare down the dataset and stick with a subset of variables:



mariokart <- select(
mariokart_no_outliers, totalPr, cond, stockPhoto, duration, wheels)
glimpse(mariokart, width = 80)

## Observations: 141
## Variables: 5

## $ totalPr <dbl> 51.55, 37.04, 45.50, 44.00, 71.00, 45.00, 37.02, 53.99,

## $ cond <fctr> new, used, new, new, new, new, used, new, used, used, n...
## $ stockPhoto <fctr> yes, yes, no, yes, yes, yes, yes, yes, yes, no, yes, ye...
## $ duration <int> 3, 7, 3, 3, 1, 3, 1, 1, 3, 7, 1, 1, 1, 1, 7, 7, 3, 3, 1,...
## $ wheels <int> 1, 1, 1, 1, 2, 0, 0, 2, 1, 1, 2, 2, 2, 2, 1, 0, 1, 1, 2,...

Visualize how much the game condition and whether a stock photo was part of the listing affected the total price:

ggplot (mariokart) +
geom_histogram(
mapping = aes(totalPr, fill = cond, color = cond), position = ”identity”,
alpha = 0.3, center = 0, binwidth = 2) +
facet_wrap(~stockPhoto)

no yes
12.5-

10.0-

7.5- cond

[:]new
5.0- l:‘ used

25-

o0 il il

30 40 50 60 70 30 40 50 60 70
totalPr

count
1
]
]

Is totalPr nearly normal? How does the distribution shape change if we split the dataset by categories?

First, make a Q-Q plot to check totalPr by itself:

ggplot (mariokart) +
geom_qqg(mapping = aes(sample = totalPr))



70- o
°
o0

60 - ‘gf"'.
o
o
% 50-
n

40~

o
30- o ®000°
°
2 -1 0 1 2
theoretical
Next, make a Q-Q plot with totalPr split by game condition:
ggplot (mariokart) +
geom_qq(mapping = aes(sample = totalPr, color = cond))
70-
) [
°

60 -
%— ® cond
IS K new
c 50-
n ® used

40-

;’
)
30- , o ° 000
-2 -1 0 1 2

theoretical

Finally, make a Q-Q plot with totalPr split by game condition and faceted by stockPhoto:
ggplot (mariokart) +
geom_qq(mapping = aes(sample = totalPr, color = cond)) +
facet_wrap( ~ stockPhoto)



no yes

70-
° (]
[ ) P
60 ¢
i cond
[ ) ..
° ° ® new

sample

50- "f
. . ® used

30- ¢ °®
1 1 1 1 1 1 1 1 1 1
-2 -1 0 1 2 -2 -1 0 1 2
theoretical

What happens if we plot totalPr as a function of cond, a categorical variable?

ggplot (mariokart) +
geom_point(mapping = aes(cond, totalPr), size = 3, alpha = 0.7)

O
70- ®
e
60- o
a
©
© 50-
40- 8
30-
1 1
new used
cond

It’s a little easier to see the points if we jitter them:

ggplot (mariokart) +
geom_jitter (mapping
width =

= aes(cond, totalPr), size = 3, alpha = 0.7,
0.25, height = 0.25)



70~ ®
® "‘F".C
60- PY ®
)
: e,
@]

50- ..‘%

40 - .’

30-

new
cond

Univariate linear regression model of Mario Kart’s total price

First, let’s try and model the game price by the cond categorical variable:

mariokart_linear_model <- lm(totalPr~cond, data = mariokart)
grid <- data_grid(mariokart, cond)
grid <- add_predictions(grid, mariokart_linear_model)
mariokart_linear_compare <- select(mariokart, cond, totalPr)
mariokart_linear_compare <- add_residuals(

data = mariokart_linear_compare, model = mariokart_linear_model)

Remember what grid looks like:
head(grid, n = 10)

## # A tibble: 2 x 2
Hit cond pred
H#t <fctr> <dbl>
## 1 new 53.77068
#Hi 2 used 42.87110

Here’s what the residuals look like relative to the data points:

head(mariokart_linear_compare, n = 10)

## # A tibble: 10 x 3

Hit cond totalPr resid
## <fctr> <dbl> <dbl>
## 1 new 51.55 -2.220678
## 2 used 37.04 -5.831098
#%# 3 new 45.50 -8.270678
#H# 4 new 44.00 -9.770678
## 5 new 71.00 17.229322
## 6 new 45.00 -8.770678
#4# 7 used 37.02 -5.851098
## 8 new 53.99 0.219322
## 9 used 47.00 4.128902
## 10 used 50.00 7.128902



Print out some basic details about the linear fit:

summary(mariokart_linear_model)

H#

## Ccall:

## 1Im(formula = totalPr ~ cond, data = mariokart)

H#

## Residuals:

H#it Min 1Q Median 30 Max

## -13.8911 -5.8311 0.1289 4.1289 22.1489

##t

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 53.7707 0.9596 56.034 < 2e-16 ***
## condused -10.8996 1.2583 -8.662 1.06e-14 ***
## ---

## Signif. codes: O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' " 1
H#

## Residual standard error: 7.371 on 139 degrees of freedom
## Multiple R-squared: 0.3506, Adjusted R-squared: 0.3459
## F-statistic: 75.03 on 1 and 139 DF, p-value: 1.056e-14

Since cond is categorical, what will it look like when we overlay our models’ predictions on the data? We make the
plot:
ggplot (mariokart) +

geom_point (aes(cond, totalPr)) +

geom_point (aes(cond, pred), data=grid, color="red”, size=3)

[ ]
70- T
[
' (]
[
60 - i
o (]
©
‘S 50-
40- H
30- '
new used
cond

Next, let’s inspect the residuals:

ggplot (mariokart_linear_compare) +
geom_histogram(aes(resid), binwidth = 1, center = 0)



10-

count

1
-10 0 10 20
resid

It seems like we might need more than one variable to model this dataset.

Multivariate linear regression model of Mario Kart’s total price

Can other variables have an effect? Let’s see how cond is affected by duration:
ggplot (mariokart) +
geom_point (aes(duration, totalPr), size=3, alpha=0.7) +
facet_wrap(~cond)

new used
(]
70- @
) [ ]
60 - ®
a o ® o © o
©
g 50- e o P ’
e § o o ®
® o
40- o
° 8
30- . e
25 5.0 75 10.0 25 5.0 75 10.0

duration

There’s a slight dependence for new games, but overall the dependence is weak and the two variables move indepen-
dently of one another.

Let’s build a linear regression model taking the variables cond, stockPhoto, duration, and wheels all into
account. We assume the variables are independent, i.e. we do not consider interaction terms such as cond *
duration. The model is built in a way that’s similar to the univariate case:

mariokart_model2 <- lm(totalPr ~ cond + stockPhoto + duration + wheels,
data=mariokart)
grid <- data_grid(mariokart, cond, stockPhoto, duration, wheels)



grid <- add_predictions(grid, mariokart_model2)

mariokart_model2_compare <- select(mariokart, everything())

mariokart_model2_compare <- add_residuals(
mariokart_model2_compare, mariokart_model2)

Because we have a multivariate model, we cannot create a single visualization that shows how the model responds
to all variables at the same time. However, there are some other methods for visualizing a multivariate model’s
performance. One of them is to plot the model’s predicted values for each data point as a function of the actual values.
To help create this plot, we can use predict (), which takes the 1m() model saved in a variable as its input, and
then gives you a list of predictions as output. To create this plot, first we create a tibble containing the predicted
and actual values of totalPr

mariokart_model2_pred_vs_actual <- tibble(
prediction = predict(mariokart_model2), actual = mariokart$totalPr)

Then we create a scatterplot of the table. The straight line shows what a perfect model would correspond to, so
deviations from the line show where the model fails to be quantitatively accurate (note that this is just another way
to look at residuals):

ggplot (mariokart_model2_pred_vs_actual) +
geom_point (aes(prediction, actual)) +
geom_abline(slope = 1, intercept = 0, color = “red”, size = 1)

40 50 60
prediction

We can also look at the residuals the traditional way. Let’s compute the residuals and compare them against the
univariate model with just cond:

ggplot (mariokart_model2_compare) +
geom_histogram(data = mariokart_linear_compare, mapping = aes(resid),

alpha = 0.4, binwidth = 1, fill = ”red”,

position = ”identity”, center = 0) +
geom_histogram(mapping = aes(resid), binwidth = 1, alpha = 0.6,

fill = ”cyan2”, position = ”identity”, center = 0)



20-

15-

count

10-

resid

The overall spread in the residuals has decreased, so it appears that the multivariate model is better at prediction.

Model comparison

The above comparison of residuals indirectly raises the general question of how to compare models against one
another. For example, how should we compare models with different numbers of variables? One way is to compute a
parameter like the Akaike information criterion (AIC), which is described below:

Akaike information criterion (AIC)

The Akaike information criterion is defined as follows:

The Akaike information criterion (AIC) is a measure of the relative quality of statistical models for a
given set of data. Given a collection of models for the data, AIC estimates the quality of each model,
relative to each of the other models. Hence, AIC provides a means for model selection. AIC is founded
on information theory: it offers a relative estimate of the information lost when a given model is used
to represent the process that generates the data. In doing so, it deals with the trade-off between the
goodness of fit of the model and the complexity of the model. AIC does not provide a test of a model in
the sense of testing a null hypothesis, so it can tell nothing about the quality of the model in an absolute
sense. If all the candidate models fit poorly, AIC will not give any warning of that. Wikipedia

In terms of using the AIC in practice:

To apply AIC in practice, we start with a set of candidate models, and then find the models’ corresponding
AIC values. There will almost always be information lost due to using a candidate model to represent
the “true” model (i.e. the process that generates the data). We wish to select, from among the candidate
models, the model that minimizes the information loss. We cannot choose with certainty, but we can
minimize the estimated information loss.

As an example, suppose that there are three candidate models, whose AIC values are 100, 102, and 110.
Then the second model is exp((100 - 102)/2) = 0.368 times as probable as the first model to minimize the
information loss. Similarly, the third model is exp((100 - 110)/2) = 0.007 times as probable as the first
model to minimize the information loss.

In this example, we would omit the third model from further consideration. We then have three options:
(1) gather more data, in the hope that this will allow clearly distinguishing between the first two models;
(2) simply conclude that the data is insufficient to support selecting one model from among the first two;

10



(3) take a weighted average of the first two models, with weights proportional to 1 and 0.368, respectively,
and then do statistical inference based on the weighted multimodel Wikipedia

Comparing linear regression models of the Mario Kart dataset using R

In R, apply the AIC() function to a variable holding the results of a Im() calculation. We want the AIC score to be
as small as possible, and the model with the lowest score is selected (if scores are close, then those are the plausible
models). For the multivariate model with variables cond, stockPhoto, duration, and wheels:

AIC(mariokart_model2)

## [1] 855.2946

For the univariate model with just cond:

AIC(mariokart_linear_model)

## [1] 967.4329

The multivariate model has a lower AIC score, so we would select that model over the univariate one. This agrees
with our intuition gained from visually comparing the residual distribution of each model.

Split dataset 80/20

Frequently, it’s good practice to split a dataset prior to testing a model. Here we’ll demonstrate how to create an
80%/20% split, with 80% being the training set and 20% being the testing set.

mariokart_split <- mariokart %>%
crossv_mc(n = 1, test = 0.20)

The splitting mechanism in the above code is pretty basic. The outputs tell us the row numbers to use for training,
and the row numbers to use for testing.

training_ set_row_ids <- mariokart_split %>%
pull(train) %>%
map (”idx”) %>%
flatten_int ()

testing_set_row_ids <- mariokart_split %>%
pull(test) %>%
map (”idx”) %>%
flatten_int ()

Now we can slice our original data to get the two sets:

train <- mariokart %>%
slice(training_set_row_ids)

test <- mariokart %>%
slice(testing_set_row_ids)

k-fold cross-validation
K-fold cross-validation is one kind of cross-validation procedure that’s available. These methods allow us to estimate

how robust the model is by systematically removing different chunks of the dataset and repeating the fitting process.
The picture below illustrates what it means:

11



ONE ITERATION OF A 5-FoLb Cross-VALIDATION:

1=87 FoLD:

2-MD FOLD:

3-RD FOLD:

4-TH FOLD:

5-TH FOLD:

testeal trainset

frainset testset trainset

frainset testset frainset

frainset testsel frainzet

trainzset testeel

12




	Setup
	Exploration
	Univariate linear regression model of Mario Kart's total price
	Multivariate linear regression model of Mario Kart's total price
	Model comparison
	Akaike information criterion (AIC)
	Comparing linear regression models of the Mario Kart dataset using R

	Split dataset 80/20
	k-fold cross-validation

